Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Odontology ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38157109

RESUMO

To evaluate the effect of high-graduation chronic ethanol (EtOH) intake on bone and periodontal tissues of rats. Male Wistar rats (250 g) were divided into two groups of n = 12 each one. EtOH (5 ml of 3 g/kg) was administered to the experimental group by gastric gavage twice a day for 20 days and the control group received water under the same conditions. The rats were euthanized and used to perform biochemical determination in plasma and gingival tissue, and histological and biomechanical studies in the femur and mandibular tissues. Alcohol increased both TNFα (p < 0.01) and PGE2 (p < 0.05) in plasma and gingiva (p < 0.05) as compared to controls. In addition, EtOH increased the alveolar bone loss as evidenced by the increased distance between the cement enamel junction and the alveolar crest (p < 0.01), the lower % of interradicular bone expressed as bone area/total area (B.Ar/T.Ar, p < 0.05) and the larger periodontal space (p < 0.05), as compared to controls. Likewise, the mandibular microtomographic analysis in alcoholized rats revealed a lower % of interradicular bone volume/total volume (BV/TV, p < 0.05), greater trabecular separation (p < 0.05) and greater % trabecular porosity (p < 0.05) than controls. No biomechanical alteration was observed in lower jaws, while the femur of alcoholized rats presented a decrease in the structural bone properties (p < 0.001), as a systemic consequence of deterioration of the diaphyseal architecture (p < 0.01) without changes in material properties. The consumption of high doses of alcohol produces deleterious effects on periodontal tissues that could be due not only to local but also systemic effects.

2.
Acta Odontol Latinoam ; 36(2): 96-105, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37776506

RESUMO

Previous studies by us demonstrated that the consumption of thermally oxidized oil diet adversely affects body growth, lipid metabolism, bone mass and femur biomechanical competence. AIM: The aim of this study was to evaluate the effects of a diet containing fried sunflower oil on the mandible of growing rats. MATERIALS AND METHOD: Male Wistar rats (21±1 day old) (n=21) were assigned at weaning to one of three diets for 8 weeks: a control diet (C), a diet containing sunflower oil (SFO) or a diet containing sunflower oil that had been repeatedly heated (SFOx); both SFO and SFOx were mixed with commercial rat chow at 13% (w/w). The consistency and viscosity of the 3 diets were similar. Zoometrics and food intake were recorded weekly. At wk=8, mandibular growth was assessed by measurements of anatomical points of cleaned bones, and mandible biomechanical competence was assessed to estimate the structural properties of the bone. Statistical analysis was performed by SPSS v. 20.0. RESULTS: Rats fed SFOx diet attained the lowest final body weight (P=0.0074), mandibular weight (P=0.0001) and mandibular \length (P=0.0002). Load bearing capacity (Wf;N), load of yielding (Wy;N) and stiffness (Wy/dy;N/mm) of the mandible were negatively affected by both sunflower oil diets (fresh and fried) (P=0.001; P=0.002; P=0.003, respectively) though SFOx induced the most significant reduction in Wy/dy (C:44.4(5.4) > SFO:36.1(2.1) > SFOx: 26.3(3.7) N/ mm; P=0.003). The deleterious effect of SFOx on mandibular growth was more accentuated on the posterior part of the bone (C:11.4(0.3)=SFO:11.2(0.2)>SFOx: 10.7(0.2) mm; p=0.0005); the anterior/ posterior ratio (C:1.25(0.02)=SFO:1.27(0.02)

En estudios previos hemos demostrado los efectos adversos del consumo de una dieta rica en aceite termooxidado sobre el crecimiento corporal, el metabolismo de los lípidos, la masa ósea y la competencia biomecánica del fémur. OBJETIVO: El objetivo de este trabajo fue investigar el efecto de una dieta rica en aceite de girasol termooxidado (AGX) sobre los parámetros morfométricos y biomecánicos de la mandíbula de rata en crecimiento. Materiales y Método: Ratas macho Wistar de 22±1 días de edad (n=21) recibieron durante 8 semanas una de 3 dietas: control (C); dieta comercial, una dieta suplementada con aceite de girasol (AG) y una dieta suplementada con AGX. La consistencia y la viscosidad de las dietas fueron similares. Los parámetros zoométricos y el consumo de dieta se registraron semanalmente. A T=8, los animales se eutanasiaron y se obtuvieron las hemimandíbulas. El crecimiento mandibular se estimó por medidas morfométricas entre puntos anatómicos y las propiedades estructurales por biomecánica. El análisis estadístico se realizó por SPSS v. 20.0. RESULTADOS: Las ratas alimentadas con AGX presentaron menor peso corporal final (p=0.0074), peso mandibular (p=0.0001) y longitud mandibular (p=0.0002). Las propiedades estructurales de la mandíbula, Wf (p=0.001), Wy (p=0.002) y Wy/dy (p=0.003), se vieron afectadas negativamente en ratas alimentadas con AG o AGX, respecto a C; pero la rigidez ósea (Wy/dy) en AGX fue significativamente menor (C:44.4(5.4) > SFO:36.1(2.1) > SFOx: 26.3(3.7) N/mm; p=0.003). El efecto deletéreo del AGX sobre el crecimiento mandibular fue más acentuado en la región posterior (C:11.4(0.3)=SFO:11.2(0.2)>SFOx: 10.7(0.2) mm; p=0.0005). La relación anterior/posterior (C=1.25 (0.02); AG= 1.27(0.02) y AGX=1.32(0.03), p=0.001) indica que AGX indujo deformación mandibular. CONCLUSIONES: El efecto adverso del consumo de una dieta rica en AGX durante el crecimiento podría afectar los parámetros morfométricos y la biomecánica ósea en términos de rigidez ósea.


Assuntos
Dieta , Mandíbula , Ratos , Animais , Masculino , Óleo de Girassol , Ratos Wistar
3.
Acta odontol. latinoam ; 36(2): 96-105, Aug. 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1513552

RESUMO

ABSTRACT Previous studies by us demonstrated that the consumption of thermally oxidized oil diet adversely affects body growth, lipid metabolism, bone mass and femur biomechanical competence. Aim: The aim of this study was to evaluate the effects of a diet containing fried sunflower oil on the mandible of growing rats. Materials and Method: Male Wistar rats (21±1 day old) (n=21) were assigned at weaning to one of three diets for 8 weeks: a control diet (C), a diet containing sunflower oil (SFO) or a diet containing sunflower oil that had been repeatedly heated (SFOx); both SFO and SFOx were mixed with commercial rat chow at 13% (w/w). The consistency and viscosity of the 3 diets were similar. Zoometrics and food intake were recorded weekly. At wk=8, mandibular growth was assessed by measurements of anatomical points of cleaned bones, and mandible biomechanical competence was assessed to estimate the structural properties of the bone. Statistical analysis was performed by SPSS v. 20.0. Results: Rats fed SFOx diet attained the lowest final body weight (P=0.0074), mandibular weight (P=0.0001) and mandibular /length (P=0.0002). Load bearing capacity (Wf;N), load of yielding (Wy;N) and stiffness (Wy/dy;N/mm) of the mandible were negatively affected by both sunflower oil diets (fresh and fried) (P=0.001; P=0.002; P=0.003, respectively) though SFOx induced the most significant reduction in Wy/dy (C:44.4(5.4) > SFO:36.1(2.1) > SFOx: 26.3(3.7) N/ mm; P=0.003). The deleterious effect of SFOx on mandibular growth was more accentuated on the posterior part of the bone (C:11.4(0.3)=SFO:11.2(0.2)>SFOx: 10.7(0.2) mm; p=0.0005); the anterior/ posterior ratio (C:1.25(0.02)=SFO:1.27(0.02)<SFOx:1.32(0.03); p=0.0001) indicated that SFOx induced mandibular deformation. Conclusion: Consumption of SFOx diet during growth could affect mandibular morphometric properties and biomechanical competence, in terms of bone stiffness.


RESUMEN En estudios previos hemos demostrado los efectos adversos del consumo de una dieta rica en aceite termooxidado sobre el crecimiento corporal, el metabolismo de los lípidos, la masa ósea y la competencia biomecánica del fémur. Objetivo: El objetivo de este trabajo fue investigar el efecto de una dieta rica en aceite de girasol termooxidado (AGX) sobre los parámetros morfométricos y biomecánicos de la mandíbula de rata en crecimiento. Materiales y Método: Ratas macho Wistar de 22±1 días de edad (n=21) recibieron durante 8 semanas una de 3 dietas: control (C); dieta comercial, una dieta suplementada con aceite de girasol (AG) y una dieta suplementada con AGX. La consistencia y la viscosidad de las dietas fueron similares. Los parámetros zoométricos y el consumo de dieta se registraron semanalmente. A T=8, los animales se eutanasiaron y se obtuvieron las hemimandíbulas. El crecimiento mandibular se estimó por medidas morfométricas entre puntos anatómicos y las propiedades estructurales por biomecánica. El análisis estadístico se realizó por SPSS v. 20.0. Resultados: Las ratas alimentadas con AGX presentaron menor peso corporal final (p=0.0074), peso mandibular (p=0.0001) y longitud mandibular (p=0.0002). Las propiedades estructurales de la mandíbula, Wf (p=0.001), Wy (p=0.002) y Wy/dy (p=0.003), se vieron afectadas negativamente en ratas alimentadas con AG o AGX, respecto a C; pero la rigidez ósea (Wy/dy) en AGX fue significativamente menor (C:44.4(5.4) > SFO:36.1(2.1) > SFOx: 26.3(3.7) N/mm; p=0.003). El efecto deletéreo del AGX sobre el crecimiento mandibular fue más acentuado en la región posterior (C:11.4(0.3)=SFO:11.2(0.2)>SFOx: 10.7(0.2) mm; p=0.0005). La relación anterior/posterior (C=1.25 (0.02); AG= 1.27(0.02) y AGX=1.32(0.03), p=0.001) indica que AGX indujo deformación mandibular. Conclusiones: El efecto adverso del consumo de una dieta rica en AGX durante el crecimiento podría afectar los parámetros morfométricos y la biomecánica ósea en términos de rigidez ósea.

4.
Actual. osteol ; 18(2): 60-74, oct. 2022. graf, ilus, tab
Artigo em Espanhol | LILACS, UNISALUD, BINACIS | ID: biblio-1437640

RESUMO

Introducción: Los GOS son prebióticos naturales presentes en la leche materna que pue-den obtenerse enzimáticamente a partir de la lactosa de leche de vaca durante la fabricación de yogur. El producto lácteo resultante será reducido en lactosa y contendrá prebióticos y bacterias potencialmente probióticas. Sin embargo, mantendrá la baja relación Ca/Pi que aporta la leche de vaca, lo que podría alterar el remodelamiento óseo y la mineralización. Objetivo: comparar si un yogur reducido en lactosa que contiene GOS (YE) ofrece ventajas adicionales respecto de un yogur regular sin GOS (YR) sobre las absorciones (Abs) de Ca y Pi, retención y calidad ósea durante el crecimiento normal. Al destete, ratas machos fueron divididas en 3 grupos alimentados con AIN ́93-G (C), YE o YR durante 28 días. Resultados: YE mostró el mayor aumento de lactobacilos fecales; producción de ácidos grasos de cadena corta especialmente p, profundidad de las criptas colónicas y menor pH cecal. El %AbsCa y %AbsPi aumentó en el siguiente órden: YE> YR> C (p < 0,05). El contenido de Ca y Pi en fémur, la densidad y contenido mineral óseos y los parámetros biomecánicos fueron similares en YE y C, mientras que YR mostró valores significativa-mente menores (p < 0,05). Conclusiones: YE aumentó las Abs y biodisponibilidad de minerales, alcanzando la retención y calidad ósea de C. El aumento en las Abs observado en YR no logró obtener la retención y calidad ósea de C. Conclusión: YE habría contrarrestado el efecto negativo del mayor aporte de Pi de la leche de vaca y sería una buena estrategia para lograr el pico de masa ósea y calidad del hueso adecuados, especialmente en individuos intolerantes a la lactosa. (AU)


Breast milk contains an optimal calcium/phosphate (Ca/Pi) ratio and GOS. These natural prebiotics can be enzymatically produced via cow's milk lactose inyogurt manufacture. This milk product is low in lactose and contains prebiotics and potentially probiotic bacteria but maintains a low Ca/Pi ratio that could alter bone remodeling and mineralization. We evaluated if a lactose-reduced yogurt containing GOS (YE) offers additional advantages over regular yogurt without GOS (YR) on Ca and Pi absorption (Abs), bone retention and quality during normal growth. Weaning male rats were divided into 3 groups fed AIN'93-G (C), YE or YR for 28 days. Results: YE showed the highest increase in fecal lactobacilli; short-chain fatty acids production, especially propionate and butyrate; intestine crypt depth, and the lowest cecal pH. AbsCa% and AbsPi% increased in this order: YE> YR> C (p <0.05). Ca and Pi content in femur, bone density and mineral content, and biomechanical parameters were similar in YE and C, while YR showed the significantly lowest value (p < 0.05). Conclusions: YE increased mineral Abs reaching the retention and bone quality of C. Although YR increased Abs, bone retention and quality did not achieve C values. Seemingly, YE compensated for the negative effect of the higher Pi supply and would be a good strategy to achieve adequate peak bone mass and bone quality, especially in lactose intolerant individuals. (AU)


Assuntos
Animais , Ratos , Oligossacarídeos/metabolismo , Osteogênese/fisiologia , Cálcio da Dieta/farmacocinética , Fósforo na Dieta/farmacocinética , Absorção Intestinal/fisiologia , Lactose/metabolismo , Magnésio/farmacocinética , Tíbia/anatomia & histologia , Iogurte/análise , Cálcio da Dieta/metabolismo , Absorciometria de Fóton , Densidade Óssea , Interpretação Estatística de Dados , Fósforo na Dieta/metabolismo , beta-Galactosidase/síntese química , Ratos Wistar , Lactobacillus delbrueckii/isolamento & purificação , Fêmur/anatomia & histologia , Intestino Grosso/anatomia & histologia , Magnésio/metabolismo , Valor Nutritivo
5.
Sleep Breath ; 25(1): 519-527, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32761536

RESUMO

BACKGROUND: The aim of this study was to investigate the effects of exposure to continuous (CH) and intermittent (IH) hypoxia on biomechanical properties of the mandible and periodontal tissue of animals submitted to experimental periodontitis (EP) when applying loads in a hypoxic environment. METHODS: Adult female Wistar rats were exposed during 90 days to IH or CH (simulated high altitude of 4200 m above sea level). Fourteen days prior to the euthanasia, EP was induced to half of the animals of each group. RESULTS: Only in the rats with EP, IH decreased the maximum capacity of the mandible to withstand load and the limit of elastic load. Indicators of intrinsic properties of the bone material were significantly reduced by both types of hypoxia in rats with EP. Hypoxia enhanced the alveolar bone loss induced by EP in the buccal side of the mandible, without showing additional effects in lingual or interradicular bone. Hypoxia increased prostaglandin E2 content in gingival tissue of healthy animals and further elevated the E2 levels increased by EP. CONCLUSIONS: When periodontitis is present, hypoxic stress induces a decrease in mineral properties that ultimately affects the ability of the mandible to resist load, mainly during intermittent exposure to hypoxia. These effects on bone may be related to the higher levels of prostaglandin E2 reached in the surrounding gingival tissue. The findings of this study may stimulate strategies to prevent unwanted effects of hypoxia on periodontal tissues.


Assuntos
Hipóxia/complicações , Mandíbula/fisiopatologia , Periodontite/complicações , Perda do Osso Alveolar/etiologia , Animais , Fenômenos Biomecânicos , Dinoprostona/análise , Feminino , Gengiva/química , Hipóxia/fisiopatologia , Óxido Nítrico Sintase Tipo II/metabolismo , Periodontite/fisiopatologia , Periodonto/fisiopatologia , Ratos , Ratos Wistar , Suporte de Carga
6.
J Periodontol ; 90(11): 1325-1335, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31077362

RESUMO

BACKGROUND: Transient receptor potential vanilloid type-1 (TRPV1) is expressed in oral tissues cells and its activity can be regulated by inflammation products and anandamide. The aim of the present study was to evaluate the effects of blocking TRPV1 or specific cannabinoid receptors 1 (CB1r) and 2 (CB2r) on periodontal status of rats subjected to experimental periodontitis (EP). METHODS: Male rats were distributed in groups 1) control, 2) lipopolysaccharide-induced EP (LPS), and 3) LPS plus capsazepine (Capz, TRPV1 antagonist) application (LPS+Capz). EP was induced by injections of LPS (1 mg/mL) around first molars and treatment was performed with Capz (2 µg/mL) applied locally during 6 weeks. Additional experiment was performed by applying CB1r and CB2r antagonists (AM251 and AM630) to rats with EP. RESULTS: Capz prevented alveolar bone loss (ABL) on the external crests and in the interradicular bone of the first molars (periodontal space height: LPS, 270.7 ± 33.5µm versus LPS+Capz, 216.4 ± 19.9 µm; P <0.01). Inflammatory mediators, like tumor necrosis factor-alpha and prostaglandin E2 , increased by LPS-induced EP, were diminished in gingival tissue of rats treated with Capz. In contrast, application of AM251 and AM630 exacerbated ABL and gingival inflammatory mediators, increased by LPS, altering also biomechanical properties. CONCLUSIONS: TRPV1 blockade attenuates periodontal impairment in EP rats, since it reduces local inflammation, unlike CB1r and CB2r blockade. This work lays the foundation for developing therapeutics in humans based on the pharmacological manipulation of these receptors to treat periodontal disease.


Assuntos
Perda do Osso Alveolar , Canabinoides , Periodontite , Animais , Humanos , Lipopolissacarídeos , Masculino , Ratos , Receptores de Canabinoides
7.
Wound Repair Regen ; 26(2): 153-162, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29524350

RESUMO

Saliva is very important to oral health, and a salivary deficit has been shown to bring serious problems to oral health. There is scant information about the mechanisms through which salivary glands participate in post-tooth extraction socket healing. Therefore, the aim of the present study was to investigate the effect of submandibulectomy (SMx), consisting of the ablation of submandibular and sublingual glands (SMG and SLG, respectively), on PGE2 signaling and other bone regulatory molecules, such as OPG and RANKL, involved in tooth extraction socket healing. Male Wistar rats, 70 g body weight, were assigned to an experimental (subjected to SMx) or a control group (sham operated). One week later, the animals in both groups underwent bilateral extraction of the first mandibular molars. The effect of SMx on different stages of socket healing after tooth extraction (7, 14, and 30 days) was studied by evaluating some parameters of inflammation, including PGE2 and its receptors, and of bone metabolism, as well as by performing bone biomechanical studies. SMx increased TNFα and PGE2 content as well as cyclooxygenase-II (COX-II) expression in tooth socket tissue at almost all the studied time points. SMx also had an effect on mRNA expression of PGE2 receptors at the different time points, but did not significantly alter osteoprotegerin (OPG) and RANKL mRNA expression at any of the studied time points. In addition, an increase in bone mass density was observed in SMx rats compared with matched controls, and the structural and mechanical bone properties of the mandibular socket bone were also affected by SMx. Our results suggest that the SMG/SLG complex regulates cellular activation and differentiation by modulating the production of molecules intervening in tooth extraction socket repair, including the PGE2 signaling system, which would therefore account for the higher density and resistance of the newly formed bone in SMx rat.


Assuntos
Inflamação/patologia , Prostaglandina-E Sintases/metabolismo , Receptores de Prostaglandina/metabolismo , Saliva/metabolismo , Ductos Salivares/cirurgia , Extração Dentária , Alvéolo Dental/patologia , Cicatrização/fisiologia , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar
8.
Biomed Mater Eng ; 28(4): 431-441, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28869430

RESUMO

BACKGROUND: Physical activity plays a tremendous role in determining bone mechanical behavior, which is superimposed to gravidity. OBJECTIVE: Compare the geometric and material responses of the rat femur to a high intensity treadmill running training of a relatively short duration, as assessed by 3-point mechanical test. METHODS: Mature male rats (180.0 ± 30 g) were assigned (7 rats/group) to no exercise (NE) or treadmill exercise (EX). After a preconditioning period, the running speed was set at 45 cm.seg-1 during 2 wks, frequency 5 d/wk, 2-hour sessions/day. Body weight and weight of the crural quadriceps were registered at euthanasia. The right femur was mechanically tested through 3-point bending. The left femur was ashed to estimate bone mineral content. Geometric and material bone properties were estimated directly or calculated by appropriate equations. RESULTS: 1) Final body weight was 14% reduced in EX rats, while the crural quadriceps was 47% increased. Yield and fracture loads, and structural stiffness were significantly higher in the EX rats, as were the apparent elastic modulus, the bone mineral content and the degree of mineralization. Geometric properties were not affected. CONCLUSIONS: High intensity treadmill running training increases bone strength and stiffness by increasing material stiffness and mineralization, without affecting geometric bone parameters.


Assuntos
Densidade Óssea , Fêmur/fisiologia , Corrida/fisiologia , Animais , Fenômenos Biomecânicos , Masculino , Condicionamento Físico Animal , Ratos
9.
Arch Oral Biol ; 80: 10-17, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28363114

RESUMO

OBJECTIVE: In order to provide a better understanding of the sympathetic nervous system as a negative regulator of bone status, the aim of the study was to establish the biomechanical mandible response to different doses of a ß-adrenergic antagonist such as propranolol (P) in a stress-induced food restriction model of growth retardation. METHODS: Rats were assigned to eight groups: Control (C), C+P3.5 (CP3.5), C+P7 (CP7), C+P14 (CP14), NGR, NGR+P3.5 (NGRP3.5), NGR+P7 (NGRP7) and NGR+P14 (NGRP14). C, CP3.5, CP7 and CP14 rats were freely fed with the standard diet. NGR, NGRP3.5, NGRP7 and NGRP14 rats received, for 4 weeks (W4), 80% of the amount of controls food consumed. Propranolol 3.5, 7 and 14mg/kg/day was injected ip 5days per week in CP3.5 and NGRP3.5, CP7 and NGRP7, CP14 and NGRP14, respectively. At W4, zoometry, mandible morphometry, static histomorphometric and biomechanical competence were performed. RESULTS: A dose of Propranolol 7mg/kg/day induced interradicular bone volume accretion reaching a mandible stiffness according to chronological age. CONCLUSION: These findings evidenced that sympathetic nervous system activity is a negative regulator of mandible mechanical competence in the nutritional growth retardation model. Propranolol 7mg/kg/day, under the regimen usage, seems to be appropriate to blockade SNS activity on mandible mechanical performance in NGR rats, probably associated to an effect on bone mechanostat system ability to detect disuse mode as an error.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Doenças do Desenvolvimento Ósseo/fisiopatologia , Privação de Alimentos/fisiologia , Mandíbula/efeitos dos fármacos , Mandíbula/crescimento & desenvolvimento , Propranolol/farmacologia , Sistema Nervoso Simpático/fisiopatologia , Animais , Biomarcadores , Fenômenos Biomecânicos , Peso Corporal , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Elasticidade , Masculino , Mandíbula/fisiopatologia , Tamanho do Órgão/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Wistar
10.
Acta Odontol Latinoam ; 29(2): 168-177, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27731487

RESUMO

Bisphosphonates are the first choice therapy for the pharmaco logical treatment of osteoporosis. Following reports of cases of bisphosphonaterelated osteonecrosis of the jaw and atypical femur fracture, the safety of longterm use of bisphosphonates has been evaluated, resulting in the proposal of strontium as an alternative drug. No experimental study using a sequential administration design has been reported to date. Hence, the aim of this study was to evaluate the effect on bone tissue of ovariectomized rats of administration of alendronate followed by strontium ranelate. Fortyeight female Wistar rats were ovariectomized on day 1 of the experiment. Beginning on day 30, they were administered 0.3 mg/kg/week of alendronate (ALN) or vehicle (VEH) for 8 weeks. Two groups (ALN and corresponding control) were euthanized at this time, and the remaining animals were divided into 4 groups and given 290 mg/kg/day of strontium ranelate (SR) in their drinking water (TW) or only water for 4 months. Experimental groups were: ALN+SR, ALN+TW, VEH+SR, VEH+TW, ALN and VEH. The tibiae and hemimandibles were resected for histomorphometric evaluation, and the right femur was used to perform biomechanical studies. ANOVA and Bonferroni test were applied. Diaphyseal stiffness, maximum elastic load and fracture load increased in animals that received alendronate, regardless of whether or not they received subsequent SR treatment. Fracture load also increased in VEH+ SR versus control (VEH+TW). Subchondral and interradicular bone volumes were significantly higher in animals that received ALN than in those that received vehicle. No difference was observed in cortical area or thickness of the tibia among treatments. The results obtained with the model presented here, evaluating tibial and mandibular interradicular bone, showed that the combination of ALN and SR and administration of ALN alone are equally effective in preventing bone loss associated with ovariectomyinduced estrogen depletion.


Si bien la primera opción terapéutica para el tratamiento farmacológico de la osteoporosis son los bisfosfonatos (BPs), luego de los primeros reportes en 2003 de los casos de osteone crosis de mandíbula asociada al uso de dichas drogas y las fracturas atípicas de fémur, se ha evaluado su seguridad a largo plazo. Además, en aquellos pacientes que no responden al tratamiento con BPs y mantienen elevado el riesgo de fractura, es necesario suspender su administración y alternar con otras drogas. Una de las que se ha utilizado en la clínica luego del tratamiento con BPs es el ranelato de estroncio (SR). Existen varios trabajos clínicos que reportan los efectos de la administra ción secuencial de ambas drogas, aunque estudios experi men tales con un diseño secuencial aun no se han reportado. Por ello el objetivo de este trabajo ha sido evaluar el efecto de la administración secuencial de alendronato, seguido de ranelato de estroncio sobre el tejido óseo de ratas ovariectomizadas. Se utilizaron 48 ratas Wistar hembras de dos meses de edad divididas en 6 grupos de 8 animales cada uno. El día 1 de experiencia todas fueron ovariectomizadas. El día 30 se comenzó con la administración de alendronato (ALN) en una dosis de 0.3 mg/kg/semana o vehículo (VEH) durante 8 semanas. Luego de este período se sacrificaron dos grupos (uno que recibió ALN y su correspondiente control (sólo vehículo). Los cuatro grupos restantes continuaron con ranelato de estroncio (SR) en el agua de bebida durante 4 meses en una dosis de 290 mg/kg/día o sólo agua corriente( TW) Luego de ese período fueron eutanasiados. Así, los grupos experimentales conformados fueron: ALN+SR, ALN+TW, VEH+SR, VEH+TW, ALN y VEH. Para los estudios histomorfométricos se extrajeron ambas tibias y hemimandíbulas; para el estudio biomecánico se utilizó el fémur derecho. Los resultados fueron analizados mediante el test de ANOVA y el test de Bonferroni. Incrementaron significativamente la rigidez diafisaria, la carga elástica límite y la carga de fractura aquellos grupos que recibieron alendronato versus aquellos que no lo recibieron, independientemente del tratamiento posterior con SR. La carga de fractura además fue mayor en el grupo VEH+SR versus el control (VEH+TW). En cuanto al volumen óseo subcondral e interradicular evaluado histomorfométricamente fue significativamente mayor en aquellos animales que recibieron ALN versus aquellos que recibieron vehículo. No se detectaron diferencias entre aquellos grupos que recibieron SR y sus controles. El área y espesor cortical de la tibia no mostraron diferencias entre grupos. Los resultados obtenidos en el modelo estudiado tanto a nivel del volumen óseo subcondral y cortical de la tibia como a nivel del hueso interradicular del maxilar inferior, mostraron que la combinación de ALN con SR y la administración aislada de ALN son igualmente efectivas para prevenir la pérdida ósea causada por la depleción estrogénica de la ovariectomía.


Assuntos
Alendronato/administração & dosagem , Conservadores da Densidade Óssea/administração & dosagem , Osso e Ossos/efeitos dos fármacos , Tiofenos/administração & dosagem , Animais , Fenômenos Biomecânicos , Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Feminino , Ovariectomia , Ratos , Ratos Wistar
11.
High Alt Med Biol ; 17(1): 50-3, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26949914

RESUMO

The growth of the body and bone mass and the mechanical properties of appendicular bone are impaired in immature rats exposed to different simulated high altitudes (SHA) (1850-5450 m) between the 32nd and the 74th days of postnatal life. Now, we report the effects of exposure to 4100 m on the above cited variables in female rats from infancy (age: 1 month) to adulthood (age: 8 months) to define the occurrence of catch up and to establish whether the effects of altitude are transient or permanent. The ex vivo right femur was mechanically tested in three-point bending. Body weight and length, and structural (loads at yielding and fracture, and stiffness) and architectural (diaphyseal cross-sectional area, cortical area, and cross-sectional moment of inertia) properties were measured at 2, 4, 6, and 8 months of exposure to SHA. The negative influence of hypoxia on all variables was similar at different ages or, in other words, the difference among ages was maintained at any extent of hypoxia. Hypoxia did not affect the elastic modulus, thus suggesting that the mechanical properties of the bone tissue were maintained. Catch up did not occur. The resulting osteopenic bone remained appropriate to its mechanical function during the entire exposure to SHA.


Assuntos
Doença da Altitude/fisiopatologia , Altitude , Desenvolvimento Ósseo/fisiologia , Fêmur/crescimento & desenvolvimento , Doença da Altitude/complicações , Animais , Fenômenos Biomecânicos , Peso Corporal , Doenças Ósseas Metabólicas/etiologia , Doenças Ósseas Metabólicas/fisiopatologia , Feminino , Fêmur/fisiopatologia , Ratos , Ratos Sprague-Dawley
12.
Br J Nutr ; 115(9): 1687-95, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26961128

RESUMO

Both undernutrition and hypoxia exert a negative influence on both growth pattern and bone mechanical properties in developing rats. The present study explored the effects of chronic food restriction on both variables in growing rats exposed to simulated high-altitude hypoxia. Male rats (n 80) aged 28 d were divided into normoxic (Nx) and hypoxic (Hx) groups. Hx rats were exposed to hypobaric air (380 mmHg) in decompression chambers. At T0, Nx and Hx rats were subdivided into four equal subgroups: normoxic control and hypoxic controls, and normoxic growth-restricted and hypoxic growth-restricted received 80 % of the amount of food consumed freely by their respective controls for a 4-week period. Half of these animals were studied at the end of this period (T4). The remaining rats in each group continued under the same environmental conditions, but food was offered ad libitum to explore the type of catch-up growth during 8 weeks. Structural bone properties (strength and stiffness) were evaluated in the right femur midshaft by the mechanical three-point bending test; geometric properties (length, cross-sectional area, cortical mass, bending cross-sectional moment of inertia) and intrinsic properties of the bone tissue (elastic modulus) were measured or derived from appropriate equations. Bone mineralisation was assessed by ash measurement of the left femur. These data indicate that the growth-retarded effects of diminished food intake, induced either by food restriction or hypoxia-related inhibition of appetite, generated the formation of corresponding smaller bones in which subnormal structural and geometric properties were observed. However, they seemed to be appropriate to the body mass of the animals and suggest, therefore, that the bones were not osteopenic. When food restriction was imposed in Hx rats, the combined effects of both variables were additive, inducing a further reduction of bone mass and bone load-carrying capacity. In all cases, the mechanical properties of the mineralised tissue were unaffected. This and the capacity of the treated bones to undergone complete catch-up growth with full restoration of the biomechanical properties suggest that undernutrition, under either Nx or Hx conditions, does not affect bone behaviour because it remains appropriate to its mechanical functions.


Assuntos
Altitude , Peso Corporal , Calcificação Fisiológica , Restrição Calórica , Fêmur/fisiologia , Hipóxia/complicações , Desnutrição/complicações , Animais , Fenômenos Biomecânicos , Densidade Óssea , Ingestão de Energia , Fêmur/crescimento & desenvolvimento , Fêmur/metabolismo , Hipóxia/metabolismo , Masculino , Desnutrição/metabolismo , Ratos Wistar , Valores de Referência
13.
Int J Food Sci Nutr ; 67(4): 441-53, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26983467

RESUMO

Phytosterols (P) and fish-oil (F) efficacy on high-oleic-sunflower oil (HOSO) diets were assessed in hypercholesterolemic growing rats. Controls (C) received a standard diet for 8 weeks; experimental rats were fed an atherogenic diet (AT) for 3 weeks, thereafter were divided into four groups fed for 5 weeks a monounsaturated fatty acid diet (MUFA) containing either: extra virgin olive oil (OO), HOSO or HOSO supplemented with P or F. The diets did not alter body weight or growth. HOSO-P and HOSO-F rats showed reduced total cholesterol (T-chol), non-high-density lipoprotein-cholesterol (non-HDL-chol) and triglycerides and increased HDL-chol levels, comparably to the OO rats. Total body fat (%) was similar among all rats; but HOSO-F showed the lowest intestinal, epididymal and perirenal fat. However, bone mineral content and density, and bone yield stress and modulus of elasticity were unchanged. Growing hypercholesterolemic rats fed HOSO with P or F improved serum lipids and fat distribution, but did not influence material bone quality.


Assuntos
Anticolesterolemiantes/uso terapêutico , Gorduras Insaturadas na Dieta/uso terapêutico , Suplementos Nutricionais , Óleos de Peixe/uso terapêutico , Hipercolesterolemia/dietoterapia , Fitosteróis/uso terapêutico , Óleos de Plantas/uso terapêutico , Animais , Anticolesterolemiantes/efeitos adversos , Manteiga/efeitos adversos , Colesterol/sangue , HDL-Colesterol/sangue , Dieta Aterogênica/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Gorduras Insaturadas na Dieta/efeitos adversos , Suplementos Nutricionais/efeitos adversos , Óleos de Peixe/efeitos adversos , Hipercolesterolemia/sangue , Hipercolesterolemia/etiologia , Masculino , Ácido Oleico/efeitos adversos , Ácido Oleico/uso terapêutico , Azeite de Oliva/efeitos adversos , Azeite de Oliva/uso terapêutico , Fitosteróis/efeitos adversos , Óleos de Plantas/efeitos adversos , Distribuição Aleatória , Ratos Wistar , Óleo de Girassol , Triglicerídeos/sangue , Desmame
14.
Exp Toxicol Pathol ; 68(1): 47-53, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26422677

RESUMO

Lead (Pb) is a persistent environmental contaminant that is mainly stored in bones being an important source of endogenous lead exposure during periods of increased bone resorption as occurs in menopause. As no evidence exists of which bone biomechanical properties are impaired in those elderly women who had been exposed to Pb during their lifetime, the aim of the present study is to discern whether chronic lead poisoning magnifies the deterioration of bone biology that occurs in later stages of life. We investigated the effect of Pb in the femora of ovariectomized (OVX) female Wistar rats who had been intoxicated with 1000 ppm of Pb acetate in drinking water for 8 months. Structural properties were determined using a three-point bending mechanical test, and geometrical and material properties were evaluated after obtaining the load/deformation curve. Areal Bone Mineral Density (BMD) was estimated using a bone densitometer. Femoral histomorphometry was carried out on slices dyed with H&E (Hematoxylin and Eosin). Pb and OVX decreased all structural properties with a higher effect when both treatments were applied together. Medullar and cortical area of femurs under OVX increased, allowing the bone to accommodate its architecture, which was not observed under Pb intoxication. Pb and OVX significantly decreased BMD, showing lead treated ovariectomized rats (PbOVX) animals the lowest BMD levels. Trabecular bone volume per total volume (BV/TV%) was decreased in OVX and PbOVX animals in 54% compared to the control animals (p<0.001). Pb femurs also showed 28% less trabeculae than the control (p<0.05). We demonstrated that Pb intoxication magnifies the impairment in bone biomechanics of OVX rats with a consequent enhancement of the risk of fracture. These results enable the discussion of the detrimental effects of lead intoxication in bone biology in elderly women.


Assuntos
Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Intoxicação por Chumbo/complicações , Compostos Organometálicos/toxicidade , Osteoporose Pós-Menopausa/complicações , Absorciometria de Fóton , Animais , Fenômenos Biomecânicos , Densidade Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Ovariectomia , Ratos , Ratos Wistar
15.
Acta odontol. latinoam ; 29(2): 168-177, 2016. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-949699

RESUMO

Bisphosphonates are the first choice therapy for the pharmaco logical treatment of osteoporosis. Following reports of cases of bisphosphonaterelated osteonecrosis of the jaw and atypical femur fracture, the safety of longterm use of bisphosphonates has been evaluated, resulting in the proposal of strontium as an alternative drug. No experimental study using a sequential administration design has been reported to date. Hence, the aim of this study was to evaluate the effect on bone tissue of ovariectomized rats of administration of alendronate followed by strontium ranelate. Fortyeight female Wistar rats were ovariectomized on day 1 of the experiment. Beginning on day 30, they were administered 0.3 mg/kg/week of alendronate (ALN) or vehicle (VEH) for 8 weeks. Two groups (ALN and corresponding control) were euthanized at this time, and the remaining animals were divided into 4 groups and given 290 mg/kg/day of strontium ranelate (SR) in their drinking water (TW) or only water for 4 months. Experimental groups were: ALN+SR, ALN+TW, VEH+SR, VEH+TW, ALN and VEH. The tibiae and hemimandibles were resected for histomorphometric evaluation, and the right femur was used to perform biomechanical studies. ANOVA and Bonferroni test were applied. Diaphyseal stiffness, maximum elastic load and fracture load increased in animals that received alendronate, regardless of whether or not they received subsequent SR treatment. Fracture load also increased in VEH+ SR versus control (VEH+TW). Subchondral and interradicular bone volumes were significantly higher in animals that received ALN than in those that received vehicle. No difference was observed in cortical area or thickness of the tibia among treatments. The results obtained with the model presented here, evaluating tibial and mandibular interradicular bone, showed that the combination of ALN and SR and administration of ALN alone are equally effective in preventing bone loss associated with ovariectomyinduced estrogen depletion.


Si bien la primera opción terapéutica para el tratamiento farmacológico de la osteoporosis son los bisfosfonatos (BPs), luego de los primeros reportes en 2003 de los casos de osteone crosis de mandíbula asociada al uso de dichas drogas y las fracturas atípicas de fémur, se ha evaluado su seguridad a largo plazo. Además, en aquellos pacientes que no responden al tratamiento con BPs y mantienen elevado el riesgo de fractura, es necesario suspender su administración y alternar con otras drogas. Una de las que se ha utilizado en la clínica luego del tratamiento con BPs es el ranelato de estroncio (SR). Existen varios trabajos clínicos que reportan los efectos de la administra ción secuencial de ambas drogas, aunque estudios experi men tales con un diseño secuencial aun no se han reportado. Por ello el objetivo de este trabajo ha sido evaluar el efecto de la administración secuencial de alendronato, seguido de ranelato de estroncio sobre el tejido óseo de ratas ovariectomizadas. Se utilizaron 48 ratas Wistar hembras de dos meses de edad divididas en 6 grupos de 8 animales cada uno. El día 1 de experiencia todas fueron ovariectomizadas. El día 30 se comenzó con la administración de alendronato (ALN) en una dosis de 0.3 mg/kg/semana o vehículo (VEH) durante 8 semanas. Luego de este período se sacrificaron dos grupos (uno que recibió ALN y su correspondiente control (sólo vehículo). Los cuatro grupos restantes continuaron con ranelato de estroncio (SR) en el agua de bebida durante 4 meses en una dosis de 290 mg/kg/día o sólo agua corriente( TW) Luego de ese período fueron eutanasiados. Así, los grupos experimentales conformados fueron: ALN+SR, ALN+TW, VEH+SR, VEH+TW, ALN y VEH. Para los estudios histomorfométricos se extrajeron ambas tibias y hemimandíbulas; para el estudio biomecánico se utilizó el fémur derecho. Los resultados fueron analizados mediante el test de ANOVA y el test de Bonferroni. Incrementaron significativamente la rigidez diafisaria, la carga elástica límite y la carga de fractura aquellos grupos que recibieron alendronato versus aquellos que no lo recibieron, independientemente del tratamiento posterior con SR. La carga de fractura además fue mayor en el grupo VEH+SR versus el control (VEH+TW). En cuanto al volumen óseo subcondral e interradicular evaluado histomorfométricamente fue significativamente mayor en aquellos animales que recibieron ALN versus aquellos que recibieron vehículo. No se detectaron diferencias entre aquellos grupos que recibieron SR y sus controles. El área y espesor cortical de la tibia no mostraron diferencias entre grupos. Los resultados obtenidos en el modelo estudiado tanto a nivel del volumen óseo subcondral y cortical de la tibia como a nivel del hueso interradicular del maxilar inferior, mostraron que la combinación de ALN con SR y la administración aislada de ALN son igualmente efectivas para prevenir la pérdida ósea causada por la depleción estrogénica de la ovariectomía.


Assuntos
Animais , Feminino , Ratos , Tiofenos/administração & dosagem , Osso e Ossos/efeitos dos fármacos , Alendronato/administração & dosagem , Conservadores da Densidade Óssea/administração & dosagem , Fenômenos Biomecânicos , Osso e Ossos/fisiopatologia , Osso e Ossos/patologia , Ovariectomia , Ratos Wistar
16.
Eur J Oral Sci ; 123(5): 350-355, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26336977

RESUMO

This study investigated the effect of a soft diet, given to growing rats, on the biomechanical behaviour of the mandible. Female rats, 30 d of age, received an ordinary diet in the form of pellets (i.e. hard-diet group), and another group of female rats received the same diet, but ground and mixed with water, forming a paste (i.e. soft-diet group). The experiment lasted 8 wk. Body-weight and body-length gains were not affected by the consistency of the diet. No significant differences were found between groups concerning the length, height, and area of the right hemimandible. Mechanical properties of the right hemimandibles were determined using a three-point bending test, in which bones were stressed on a perpendicular line immediately posterior to the posterior face of the third molar. Structural properties (load at yielding, load at fracture, structural stiffness, and elastic energy absorption) and geometric properties of the fracture section (cross-sectional area, cortical area, and moment of inertia) were significantly lower in hemimandibles of rats of the soft-diet group than in those of rats of the hard-diet group. Material properties of the mandibular bone tissue (elastic modulus and maximal elastic stress), which were estimated through appropriate equations, did not differ between groups. It was concluded that the reduced physical consistency of the diet, possibly associated with a reduced masticatory load, diminished the skeletal load-bearing capacity of the mandible in growing rats. This observed reduction in the bone structural behaviour was attributed to changes occurring at the level of bone mass and its geometrical properties because intrinsic properties of the bone material tissue were unaffected.

17.
Acta Odontol Latinoam ; 28(1): 83-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25950168

RESUMO

Long-term glucocorticoid administration to growing rats induces osteopenia and alterations in the biomechanical behavior of the bone. This study was performed to estimate the effects of dexamethasone (DTX), a synthetic steroid with predominant glucocorticoid activity, on the biomechanical properties of the mandible of rats during the growth phase, as assessed by bending test and peripheral quantitative computed tomographic (pQCT) analysis. The data obtained by the two methods will provide more precise information when analyzed together than separately. Female rats aged 23 d (n=7) received 500µg.kg-1 per day of DXT for 4 weeks. At the end of the treatment period, their body weight and body length were 51.3% and 20.6% lower, respectively, than controls. Hemimandible weight and area (an index of mandibular size) were 27.3% and 9.7% lower, respectively. The right hemimandible of each animal was subjected to a mechanical 3-point bending test. Significant weakening of the bone, as shown by a correlative impairment of strength and stiffness, was observed in experimental rats. Bone density and cross-sectional area were measured by pQCT. Cross-sectional, cortical and trabecular areas were reduced by 20% to 30% in the DTX group, as were other cortical parameters, including the bone density, mineral content and cross-sectional moment of inertia. The "bone strength index" (BSI, the product of the pQCT-assessed xCSMI and vCtBMD) was 56% lower in treated rats, which compares well with the 54% and 52% reduction observed in mandibular strength and stiffness determined through the bending test. Data suggest that the corticosteroid exerts a combined, negative action on bone geometry (mass and architecture) and volumetric bone mineral density of cortical bone, which would express independent effects on both cellular (material quality) and tissue (cross-sectional design) levels of biological organization of the skeleton in the species.


Assuntos
Mandíbula , Animais , Fenômenos Biomecânicos , Densidade Óssea , Dexametasona , Feminino , Ratos , Tomografia
18.
Acta odontol. latinoam ; 28(1): 83-88, Apr. 2015. graf
Artigo em Inglês | LILACS | ID: biblio-949694

RESUMO

Long-term glucocorticoid administration to growing rats induces osteopenia and alterations in the biomechanical behavior of the bone. This study was performed to estimate the effects of dexamethasone (DTX), a synthetic steroid with predominant glucocorticoid activity, on the biomechanical properties of the mandible of rats during the growth phase, as assessed by bending test and peripheral quantitative computed tomographic (pQCT) analysis. The data obtained by the two methods will provide more precise information when analyzed together than separately. Female rats aged 23 d (n=7) received 500μg.kg-1 per day of DXT for 4 weeks. At the end of the treatment period, their body weight and body length were 51.3% and 20.6% lower, respectively, than controls. Hemimandible weight and area (an index of mandibular size) were 27.3% and 9.7% lower, respectively. The right hemimandible of each animal was subjected to a mechanical 3-point bending test. Significant weakening of the bone, as shown by a correlative impairment of strength and stiffness, was observed in experimental rats. Bone density and cross-sectional area were measured by pQCT. Cross-sectional, cortical and trabecular areas were reduced by 20% to 30% in the DTX group, as were other cortical parameters, including the bone density, mineral content and cross-sectional moment of inertia. The "bone strength index" (BSI, the product of the pQCT-assessed xCSMI and vCtBMD) was 56% lower in treated rats, which compares well with the 54% and 52% reduction observed in mandibular strength and stiffness determined through the bending test. Data suggest that the corticosteroid exerts a combined, negative action on bone geometry (mass and architecture) and volumetric bone mineral density of cortical bone, which would express independent effects on both cellular (material quality) and tissue (cross-sectional design) levels of biological organization of the skeleton in the species.


La administracion cronica de glucocorticoides a ratas en fase de crecimiento induce osteopenia y modificaciones negativas del comportamiento biomecanico del hueso. El estudio presente fue realizado para estimar los efectos de dexametasona (DTX), esteroide sintetico con actividad glucorticoide predominante, sobre las propiedades biomecanicas de la mandibula de ratas durante la fase de crecimiento, estimacion realizada mediante el ensayo de flexion a tres puntos, por un lado, y tomografia periferica cuantitativa computarizada (pQCT), por el otro. Los datos obtenidos mediante los dos metodos citados brindaran informacion mas precisa cuando son analizados en forma conjunta que cuando son analizados separadamente. Ratas hembras de 23 d de edad (n = 7) recibieron 500μg.kg-1/d por via subcutanea durante 4 semanas. El peso y la longitud corporales mostraron una disminucion del 51.3% y 20.6%, respectivamente, en las ratas tratadas con respecto a las controles (n = 7). El peso de la hemimandibula derecha y el area mandibular (indice del tamano del hueso) disminuyeron 27.3% y 9.7%, respectivamente. La hemimandibula derecha de cada animal fue analizada biomecanicamente en el test de flexion a tres puntos. Se observo un significativo debilitamiento del hueso, demostrado por la disminucion correlativa de la resistencia (a la fractura) y de su rigidez estructural (medida en la fase elastica de deformacion) en los animales experimentales. La densidad osea y el area de seccion transversal fueron estimadas mediante pQCT. Las areas de seccion transversal, cortical y trabecular, mostraron una reduccion significativa de entre 20% y 30%, asi como la densidad osea, su contenido mineral y el momento de inercia de la seccion transversal. El BSI (indice de resistencia osea), el producto de xCSMI y vCtBMD (medidos topograficamente), disminuyo un 56% en las ratas tratadas, valor semejante al 54% y 52% observado en la resistencia y rigidez mandibulares determinadas mediante el test de flexion. El analisis de los resultados obtenidos sugiere que DXT ejerce una accion negativa y combinada sobre la mandibula, sobre su geometria (masa y arquitectura) y sobre su densidad mineral volumetrica del tejido cortical, acciones que expresarian efectos independientes sobre los niveles celular (calidad material) y tisular (diseno arquitectonico) de organizacion biologica del esqueleto en la especie estudiada.


Assuntos
Animais , Feminino , Ratos , Mandíbula , Fenômenos Biomecânicos , Dexametasona , Tomografia , Densidade Óssea
19.
High Alt Med Biol ; 15(3): 418-21, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25184739

RESUMO

Postnatal hypoxia blunts body mass growth. It is also known that the quality of the fetal environment can influence the subsequent adult phenotype. The main purpose of the study was to determine whether gestational hypoxia and early postnatal hypoxia are able to blunt growth when the offspring is raised under normoxia. Hypobaric hypoxia was induced in simulated high altitude (SHA) chambers in which air was maintained at 380 mmHg (5450 m). Mature Sprague-Dawley rats of both sexes were divided in normoxic (NX) and hypoxic (HX) groups and, in the case of the HX group, maintained for 1 month at 5450 m. Mating was then allowed under NX or HX conditions. Offspring were NX-NX, NX-HX, HX-HX, or HX-NX: the first term indicates NX or HX during both gestation and the first 30 days of life; the second term indicates NX or HX during postnatal life between days 30 and 133. Body mass (g) was measured periodically and body mass growth rate (BMGR, g/d) was estimated between days 33 and 65 of postnatal life. Results can be summarized as follows: 1) BM was significantly higher in NX than in HX rats at weaning; 2) BMGR was not significantly different between NX-NX and HX-NX rats, and between HX-HX and NX-HX animals; and 3) BMGR was significantly higher in rats living under NX conditions than in those living under HX conditions during postnatal life. Data suggest that that hypobaric hypoxia during gestational and early postnatal development of rats does not alter the regulation of body mass growth in rats when compared to that seen under sea-level conditions.


Assuntos
Altitude , Peso Corporal/fisiologia , Hipóxia/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/etiologia , Animais , Feminino , Hipóxia/etiologia , Masculino , Fenótipo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Ratos Sprague-Dawley
20.
Acta Odontol Latinoam ; 26(1): 43-53, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24294823

RESUMO

This study describes the effects of feeding growing rats with a diet containing inadequate and incomplete proteins on both the morphological and the biomechanical properties of the mandible. Female rats aged 30 d were fed freely with one of two diets, control (CD, 301 Cal/100g) and experimental (ED, 359 Cal/100g). CD was a standard laboratory diet, while ED was a synthetic diet containing cornflower supplemented with vitamins and minerals. Both diets had the same physical characteristics. Control (C) and experimental (E) animals were divided into 4 groups of 10 animals each. C40 and E40 rats were fed CD and ED, respectively, for 40 d; C105 were fed the CD for 105 d; and E105 were fed the ED for 40 d and then the CD for the remainder of the experimental period (65 d). Mandibular growth was estimated directly on excised and cleaned bones by taking measurements between anatomical points. Mechanical properties of the right hemimandible were estimated by using a 3-point bending test to estimate the structural properties of the bone. Geometric properties of both the entire bone and the cross-section were determined. Bone material properties were calculated from structural and geometric properties. The left hemimandibles were ashed and the ash weight obtained. Rats fed the ED failed to achieve normal body weight gain. Complete catch-up was observed at the end of nutritional rehabilitation. Mandibular weight and length were negatively affected by the ED, as were the cross-sectional area, the mineralized cortical area, and the cross-sectional moment of inertia. All of these parameters showed incomplete catch-up. The structural bone mechanical properties indicative of strength and stiffness were negatively affected. Intrinsic material properties, as assessed by the modulus of elasticity and maximal elastic stress, were within normal values. In summary, the experimental bone was weaker than the control and structurally incompetent. The bone considered was smaller than the control bone, showing a significant reduction in the cross-sectional area and the moment of inertia. However, material properties as well as the ash fraction and degree of mineralization were similar in E and C bones. Therefore, the E bone was weaker than the C bone because of its smaller bone mass, which appears to have been negatively influenced by the ED in relation to its effects on overall body mass.


Assuntos
Desenvolvimento Ósseo , Proteínas na Dieta/administração & dosagem , Mandíbula/fisiopatologia , Deficiência de Proteína/fisiopatologia , Animais , Fenômenos Biomecânicos , Feminino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...